Documentation for module generic_shg_integrals_init

Initialization for solid harmonic Gaussian (SHG) integral scheme. Scheme for calculation of contracted, spherical Gaussian integrals using the solid harmonics. Initialization of the contraction matrices

source: generic_shg_integrals_init.F
Loading...

public Subroutines/Functions:

contraction matrix for SHG integrals
mixed contraction matrix for SHG integrals [aba] and [abb] for orbital and ri basis at the same atom
...
calculate the Clebsch-Gordon (CG) coefficients for expansion of the product of two spherical harmonic Gaussians

SUBROUTINEcontraction_matrix_shg(basis, scon_shg)

contraction matrix for SHG integrals

Arguments:
POINTER
:: basis ...
REAL(dp),
POINTER
:: scon_shg(:,:,:) contraction matrix

SUBROUTINEcontraction_matrix_shg_mix(orb_basis, ri_basis, orb_index, ri_index, scon_mix)

mixed contraction matrix for SHG integrals [aba] and [abb] for orbital and ri basis at the same atom

Arguments:
POINTER
:: orb_basis orbital basis
POINTER
:: ri_basis ...
INTEGER,
POINTER
:: orb_index(:,:,:) index for orbital basis
INTEGER,
POINTER
:: ri_index(:,:,:) index for ri basis
REAL(dp),
POINTER
:: scon_mix(:,:,:,:) mixed contraction matrix

SUBROUTINEcontraction_matrix_shg_rx2m(basis, m, scon_shg, scon_rx2m)

...

Arguments:
POINTER
:: basis ...
INTEGER,
INTENT(in)
:: m ...
REAL(dp),
INTENT(in)
:: scon_shg(:,:,:) ...
REAL(dp),
ALLOCATABLE
:: scon_rx2m(:,:,:,:) ...

SUBROUTINEget_clebsch_gordon_coefficients(my_cg, cg_none0_list, ncg_none0, maxl1, maxl2)

calculate the Clebsch-Gordon (CG) coefficients for expansion of the product of two spherical harmonic Gaussians

Arguments:
REAL(dp),
POINTER
:: my_cg(:,:,:) matrix storing CG coefficients
INTEGER,
POINTER
:: cg_none0_list(:,:,:) list of none-zero CG coefficients
INTEGER,
POINTER
:: ncg_none0(:,:) number of none-zero CG coefficients
INTEGER,
INTENT(in)
:: maxl1 maximal l quantum number of 1st spherical function
INTEGER,
INTENT(in)
:: maxl2 maximal l quantum number of 2nd spherical function