Documentation for module whittaker

Calculates special integrals

source: whittaker.F
Loading...

public Subroutines/Functions:

SUBROUTINE
whittaker_c0a (wc, r, expa, erfa, alpha, l1, l2, n)
int(y^(2+l) * exp(-alpha*y*y),y=0..x); wc(:) :: output r(:) :: coordinate expa(:) :: exp(-alpha*r(:)**2) erfa(:) :: erf(sqrt(alpha)*r(:)) alpha :: exponent l1, l2 :: L-quantum number n :: number of points
SUBROUTINE
whittaker_ci (wc, r, expa, alpha, l, n)
int(y^(l+1) * exp(-alpha*y*y),y=x..infinity);

SUBROUTINEwhittaker_c0a(wc, r, expa, erfa, alpha, l1, l2, n)

int(y^(2+l) * exp(-alpha*y*y),y=0..x); wc(:) :: output r(:) :: coordinate expa(:) :: exp(-alpha*r(:)**2) erfa(:) :: erf(sqrt(alpha)*r(:)) alpha :: exponent l1, l2 :: L-quantum number n :: number of points

Arguments:
REAL(dp)
:: wc(n) ...
REAL(dp)
:: r(n) ...
REAL(dp)
:: expa(n) ...
REAL(dp)
:: erfa(n) ...
REAL(dp),
INTENT(in)
:: alpha ...
INTEGER,
INTENT(in)
:: l1 ...
INTEGER,
INTENT(in)
:: l2 ...
INTEGER,
INTENT(in)
:: n ...

SUBROUTINEwhittaker_ci(wc, r, expa, alpha, l, n)

int(y^(l+1) * exp(-alpha*y*y),y=x..infinity);

Arguments:
REAL(dp)
:: wc(n) ...
REAL(dp)
:: r(n) ...
REAL(dp)
:: expa(n) ...
REAL(dp),
INTENT(in)
:: alpha ...
INTEGER,
INTENT(in)
:: l ...
INTEGER,
INTENT(in)
:: n ...